Analysis of Multi-stage Convex Relaxation for Sparse Regularization
نویسنده
چکیده
We consider learning formulations with non-convex objective functions that often occur in practical applications. There are two approaches to this problem: • Heuristic methods such as gradient descent that only find a local minimum. A drawback of this approach is the lack of theoretical guarantee showing that the local minimum gives a good solution. • Convex relaxation such as L1-regularization that solves the problem under some conditions. However it often leads to a sub-optimal solution in reality. This paper tries to remedy the above gap between theory and practice. In particular, we present a multi-stage convex relaxation scheme for solving problems with non-convex objective functions. For learning formulations with sparse regularization, we analyze the behavior of a specific multistage relaxation scheme. Under appropriate conditions, we show that the local solution obtained by this procedure is superior to the global solution of the standard L1 convex relaxation for learning sparse targets.
منابع مشابه
Multi-stage Convex Relaxation for Learning with Sparse Regularization
We study learning formulations with non-convex regularizaton that are natural for sparse linear models. There are two approaches to this problem: • Heuristic methods such as gradient descent that only find a local minimum. A drawback of this approach is the lack of theoretical guarantee showing that the local minimum gives a good solution. • Convex relaxation such as L1-regularization that solv...
متن کاملHigh-dimensional Joint Sparsity Random Effects Model for Multi-task Learning
Joint sparsity regularization in multi-task learning has attracted much attention in recent years. The traditional convex formulation employs the group Lasso relaxation to achieve joint sparsity across tasks. Although this approach leads to a simple convex formulation, it suffers from several issues due to the looseness of the relaxation. To remedy this problem, we view jointly sparse multi-tas...
متن کاملMulti-Stage Multi-Task Feature Learning
Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to...
متن کاملOn Quadratic Convergence of DC Proximal Newton Algorithm for Nonconvex Sparse Learning in High Dimensions
We propose a DC proximal Newton algorithm for solving nonconvex regularized sparse learning problems in high dimensions. Our proposed algorithm integrates the proximal Newton algorithm with multi-stage convex relaxation based on difference of convex (DC) programming, and enjoys both strong computational and statistical guarantees. Specifically, by leveraging a sophisticated characterization of ...
متن کاملOn Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning
We propose a DC proximal Newton algorithm for solving nonconvex regularized sparse learning problems in high dimensions. Our proposed algorithm integrates the proximal newton algorithm with multi-stage convex relaxation based on the difference of convex (DC) programming, and enjoys both strong computational and statistical guarantees. Specifically, by leveraging a sophisticated characterization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 11 شماره
صفحات -
تاریخ انتشار 2010